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Abstract. We have investigated the energetics of carbon nanotubes. Calculations have been performed by
using the empirical many-body potential energy function developed by Tersoff for carbon.

PACS. 61.48.4+c Fullerenes and fullerene-related materials — 61.46.+w Clusters, nanoparticles,
and nanocrystalline materials — 31.15.Ct Semi-empirical and empiricalculations (differential overlap,

Hiickel, PPP methods, etc.)

The carbon tubule research was greatly stimulated by the
initial report of the existence of carbon nanotubes [1], and
the subsequent report of conditions for the synthesis of
large quantities of nanotubes [2]. Various experiments car-
ried out thus far are consistent with identifying the car-
bon nanotubes with cylindrical graphene sheets of carbon
atoms [3].

Formally, from the theoretical point of view, carbon
nanotubes are modeled as single-wall tubules, cylindrical
in shape, namely a single graphene sheet rolled to form the
cylinder. The various types of cylindrical shells are possi-
ble [4]; armchair tubule, zigzag tubule, and chiral tubule.
If a Cgp molecule is bisected normal to a fivefold axis,
the armchair tubule is formed, and if the Cgg molecule is
bisected normal to a threefold axis, the zigzag tubule is
formed. Chiral carbon nanotubes can be formed with a
screw axis along the axis of the tubule and with a variety
of hemispherical-like caps. The carbon nanotubes could be
either open ended or with caps at each ends, such that the
two caps can be joined to form a fullerene. A detailed in-
formation about the various properties of carbon tubules
can be found in [5].

In this paper we have investigated the energetics of car-
bon nanotubes in zigzag model with open ended forms.
Although it is possible, in principle, to calculate quan-
tum mechanically the interaction energy of a nanotube,
it requires a large computational effort and it is limited
to small systems. On the other hand, empirical many-
body potential energy functions can be applied to larger
systems.

In the present calculation we have used the Tersoff
empirical many-body potential energy function (PEF) [6],
which was developed for covalent systems, and parameter-
ized for carbon.

The carbon nanotube considered in this work is rep-
resented by two parameters. L represents the number of
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Fig. 1. Geometry of the nanotube in zigzag model with open
ended. L represents the number of hexagons along the length
of the nanotube, and W represents the number of hexagons
around the circumference of the nanotube. In this model L = 5,
and W =17.

hexagons along the length, and W represents the number
of hexagons around the circumference of the nanotube. A
model nanotube with L =5 and W = 7 is shown in Fig-
ure 1. Total number of hexagons, H, forming the nanotube
is equal to the product of L and W, namely H = LW. In
this work the carbon-carbon distance, or the side of each
hexagon has been taken as the nearest-neighbour distance
of carbon atoms in graphite with d,,,, = 2.456 A. All nan-
otubes generated for the present calculations are assumed
to be ideal, and not relaxed. The results of the calcula-
tions correspond to the unrelaxed carbon nanotubes. We
believe that the choose of the ideal model will not change
the trends seen in the calculations.

We have calculated the total interaction energy of a
given nanotube using the Tersoff PEF. The variation of
binding energy, E}, (average interaction energy per atom),
with respect to L, the number of hexagons along the length
of the nanotube is shown in Figure 2. The variation of
E}, with respect to W, the number of hexagons around
the circumference of the nanotube is shown in Figure 3.
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Fig. 2. Variation of binding energy, E; (average interaction energy per atom) with respect to L. Each curve corresponds to
different W.
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Fig. 3. Variation of binding energy, E;, (average interaction energy per atom) with respect to W. Each curve corresponds to
different L.
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Fig. 4. Variation of hexagon energy, E;, (average interaction energy per hexagon) with respect to H, number of hexagons in

the nanotube, H = LW.

On the other hand, we also plotted the variation of
hexagon energy, E; (average interaction energy per
hexagon) with respect to H, the number of hexagons in
the nanotube, in Figure 4.

As seen from Figure 2, E} versus L varies smootly
and binding energy degreases very slowly as L increases.
Each curve in Figure 2 corresponds to a different W value
starting from W = 3 up to W = 20. On the other hand,
the curves for separate W are almost parallel to each
other. Separation between successive curves degreases and
converges smoothly. The relative separation between the
curves is largest between W = 3 and 4. This means that
the nanotube with W = 3 might be very difficult practi-
cally to produce.

The variation of Ej versus W, in Figure 3, shows a sim-
ilar trend as seen in Ej versus L in Figure 2. In Figure 3
each curve corresponds to a different L value, starting
from L =1 upto L = 20. The energy positions for W = 3
are separated from the rest of them; here again one can
see that the nanotube with W = 3, whether L is small or
large, seems to be very difficult to produce experimently.
In both cases, Figures 2 and 3, average binding energy
per atom converges to the value of —7.20 eV /atom for the
largest size considered in this work (L =20, W = 20).

Variation of average interaction energy per hexagon,
E},, with respect to the number of hexagons, H, in carbon
nanotubes shows an interesting feature, which is shown in
Figure 4. Distribution of average hexagon energies shows
three different patterns. For the number of hexagons less

than 75 (H < 75), E}, varies in the range —25 and —7 eV
per hexagon (—25 < Ej < —7). On the other hand for
the nanotubes with the number of hexagons larger than
100 (H > 100), the range of Ej, becomes narrower, and
reaches a single value of —15.12 eV /hexagon.

In an infinitly large graphene plane or tube, the aver-
age interaction energy per hexagon (Ej) should be equal
to the twice of the average interaction energy per atom
(Ep). Each atom has three bonds in the tube or in the
graphene plane, energy per bond is Epong = Ep/3. On
the other hand, each hexagon has six bonds, energy per
bond in this case is Epong = Fr/6. From these results one
can write that E; = 2E,. Using this relation one can pre-
dict the average binding energy per atom in large tubes
as Fy = Ep /2 = —7.56 eV /atom. This value should corre-
spond to the asymptotic values of Figures 2 and 3, which
represent the infinitely large tube.
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